Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Adv Sci (Weinh) ; 10(30): e2303785, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37715295

RESUMO

Pervasive environmental contamination due to the uncontrolled dispersal of 2,4-dinitrotoluene (2,4-DNT) represents a substantial global health risk, demanding urgent intervention for the removal of this detrimental compound from affected sites and the promotion of ecological restoration. Conventional methodologies, however, are energy-intensive, susceptible to secondary pollution, and may inadvertently increase carbon emissions. In this study, a 2,4-DNT degradation module is designed, assembled, and validated in rice plants. Consequently, the modified rice plants acquire the ability to counteract the phytotoxicity of 2,4-DNT. The most significant finding of this study is that these modified rice plants can completely degrade 2,4-DNT into innocuous substances and subsequently introduce them into the tricarboxylic acid cycle. Further, research reveals that the modified rice plants enable the rapid phytoremediation of 2,4-DNT-contaminated soil. This innovative, eco-friendly phytoremediation approach for dinitrotoluene-contaminated soil and water demonstrates significant potential across diverse regions, substantially contributing to carbon neutrality and sustainable development objectives by repurposing carbon and energy from organic contaminants.


Assuntos
Carbono , Dinitrobenzenos , Dinitrobenzenos/análise , Dinitrobenzenos/metabolismo , Biodegradação Ambiental , Solo
2.
Ecotoxicol Environ Saf ; 262: 115287, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567105

RESUMO

2,4-Dinitrotoluene (2,4-DNT) as a common industrial waste has been massively discharged into the environment with industrial wastewater. Due to its refractory degradation, high toxicity, and bioaccumulation, 2,4-DNT pollution has become increasingly serious. Compared with the currently available physical and chemical methods, in situ bioremediation is considered as an economical and environmentally friendly approach to remove toxic compounds from contaminated environment. In this study, we relocated a complete degradation pathway of 2,4-DNT into Escherichia coli to degrade 2,4-DNT completely. Eight genes from Burkholderia sp. strain were re-synthesized by PCR-based two-step DNA synthesis method and introduced into E. coli. Degradation experiments revealed that the transformant was able to degrade 2,4-DNT completely in 12 h when the 2,4-DNT concentration reached 3 mM. The organic acids in the tricarboxylic acid cycle were detected to prove the degradation of 2,4-DNT through the artificial degradation pathway. The results proved that 2,4-DNT could be completely degraded by the engineered bacteria. In this study, the complete degradation pathway of 2,4-DNT was constructed in E. coli for the first time using synthetic biology techniques. This research provides theoretical and experimental bases for the actual treatment of 2,4-DNT, and lays a technical foundation for the bioremediation of organic pollutants.

3.
J Hazard Mater ; 451: 131099, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868133

RESUMO

After nearly 80 years of extensive application, the oldest organic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has caused many problems of environmental pollution and ecological deterioration. Bioremediation is an ideal method for pollutant treatment. However, difficult screening and preparation of efficient degradation bacteria have largely hindered its application in 2,4-D remediation. We have created a novel engineering Escherichia coli with a reconstructed complete degradation pathway of 2,4-D to solve the problem of screening highly efficient degradation bacteria in this study. The results of fluorescence quantitative PCR demonstrated that all nine genes in the degradation pathway were successfully expressed in the engineered strain. The engineered strains can quickly and completely degrade 0.5 mM 2, 4-D within 6 h. Inspiring, the engineered strains grew with 2,4-D as the sole carbon source. By using the isotope tracing method, the metabolites of 2,4-D were found incorporated into the tricarboxylic acid cycle in the engineering strain. Scanning electron microscopy showed that 2,4-D had less damage on the engineered bacteria than the wild-type strain. Engineered strain can also rapidly and completely remedy 2,4-D pollution in natural water and soil. Assembling the metabolic pathways of pollutants through synthetic biology was an effective method to create pollutant-degrading bacteria for bioremediation.


Assuntos
Poluentes Ambientais , Herbicidas , Herbicidas/metabolismo , Biodegradação Ambiental , Ácido 2,4-Diclorofenoxiacético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fenoxiacetatos , Bactérias/metabolismo
4.
Plant Biotechnol J ; 21(3): 560-573, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36448454

RESUMO

Currently, feed enzymes are primarily obtained through fermentation of fungi, bacteria, and other microorganisms. Although the manufacturing technology for feed enzymes has evolved rapidly, the activities of these enzymes decline during the granulating process and the cost of application has increased over time. An alternative approach is the use of genetically modified plants containing complex feed enzymes for direct utilization in animal feedstuff. We co-expressed three commonly used feed enzymes (phytase, ß-glucanase, and xylanase) in barley seeds using the Agrobacterium-mediated transformation method and generated a new barley germplasm. The results showed that these enzymes were stable and had no effect on the development of the seeds. Supplementation of the basal diet of laying hens with only 8% of enzyme-containing seeds decreased the quantities of indigestible carbohydrates, improved the availability of phosphorus, and reduced the impact of animal production on the environment to an extent similar to directly adding exogenous enzymes to the feed. Feeding enzyme-containing seeds to layers significantly increased the strength of the eggshell and the weight of the eggs by 10.0%-11.3% and 5.6%-7.7% respectively. The intestinal microbiota obtained from layers fed with enzyme-containing seeds was altered compared to controls and was dominated by Alispes and Rikenella. Therefore, the transgenic barley seeds produced in this study can be used as an ideal feedstuff for use in animal feed.


Assuntos
6-Fitase , Hordeum , Animais , Feminino , Galinhas , Dieta , Sementes , Engenharia Genética , Ração Animal/análise , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Animal
5.
Biotechnol Biofuels Bioprod ; 15(1): 86, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35996146

RESUMO

BACKGROUND: Production of vitamin C has been traditionally based on the Reichstein process and the two-step process. However, the two processes share a common disadvantage: vitamin C cannot be directly synthesized from D-glucose. Therefore, significant effort has been made to develop a one-step vitamin C fermentation process. While, 2-KLG, not vitamin C, is synthesized from nearly all current one-step fermentation processes. Vitamin C is naturally synthesized from glucose in Arabidopsis thaliana via a ten-step reaction pathway that is encoded by ten genes. The main objective of this study was to directly produce vitamin C from D-glucose in Escherichia coli by expression of the genes from the A. thaliana vitamin C biosynthetic pathway. RESULTS: Therefore, the ten genes of whole vitamin C synthesis pathway of A. thaliana were chemically synthesized, and an engineered strain harboring these genes was constructed in this study. The direct production of vitamin C from D-glucose based on one-step fermentation was achieved using this engineered strain and at least 1.53 mg/L vitamin C was produced in shaking flasks. CONCLUSIONS: The study demonstrates the feasibility of one-step fermentation for the production of vitamin C from D-glucose. Importantly, the one-step process has significant advantages compared with the currently used fermentation process: it can save multiple physical and chemical steps needed to convert D-glucose to D-sorbitol; it also does not involve the associated down-streaming steps required to convert 2-KLG into vitamin C.

6.
Ecotoxicol Environ Saf ; 243: 114016, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027713

RESUMO

Nitrobenzene is widely present in industrial wastewater and soil. Biodegradation has become an ideal method to remediate organic pollutants due to its low cost, high efficiency, and absence of secondary pollution. In the present study, 10 exogenous genes that can completely degrade nitrobenzene were introduced into Escherichia coli, and their successful expression in the strain was verified by fluorescence quantitative polymerase chain reaction and proteomic analysis. The results of the degradation experiment showed that the engineered strain could completely degrade 4 mM nitrobenzene within 8 h. The formation of intermediate metabolites was detected, and the final metabolites entered the E. coli tricarboxylic acid cycle smoothly. This process was discovered by isotope tracing method. Results indicated the integrality of the degradation pathway and the complete degradation of nitrobenzene. Finally, further experiments were conducted in soil to verify its degradation ability and showed that the engineered strain could also degrade 1 mM nitrobenzene within 10 h. In this study, engineered bacteria that can completely degrade nitrobenzene have been constructed successfully. The construction of remediation-engineered bacteria by synthetic biology laid the foundation for the industrial application of biological degradation of organic pollutants.


Assuntos
Poluentes Ambientais , Escherichia coli , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrobenzenos/metabolismo , Proteômica , Solo
8.
Front Microbiol ; 13: 679126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222319

RESUMO

Organophosphate compounds are widely used in pesticides to control weeds, crop diseases, and insect pests. Unfortunately, these synthetic compounds are hazardous and toxic to all types of living organisms. In the present work, Escherichia coli was bioengineered to achieve methyl parathion (MP) degradation via the introduction of six synthetic genes, namely, opdS, pnpAS, pnpBS, pnpCS, pnpDS, and pnpES, to obtain a new transformant, BL-MP. MP and its subsequent decomposition intermediates were completely degraded by this transformant to enter the metabolites of multiple anabolic pathways. The MP-degraded strain created in this study may be a promising candidate for the bioremediation of MP and potential toxic intermediates.

9.
Sci Total Environ ; 820: 153283, 2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35066037

RESUMO

Industrial thiocyanate (SCN-) waste streams from gold mining and coal coking have caused serious environmental pollution worldwide. Phytoremediation is an efficient technology in treating hazardous wastes from the environment. However, the phytoremediation efficiency of thiocyanate is very low due to the fact that plants lack thiocyanate degradation enzymes. In this study, the thiocyanate hydrolase module was assembled correctly in rice seedlings and showed thiocyanate hydrolase activity. Rice seedlings engineered to express thiocyanate degrading activity were able to completely remove thiocyanate from coking wastewater. Our findings suggest that transforming the thiocyanate hydrolase module into plants is an efficient strategy for rapid phytoremediation of thiocyanate in the environment. Moreover, the rice seedlings expressing apoplastic or cytoplasmic targeted thiocyanate hydrolase module were constructed to compare the phytoremediation efficiency of secretory/intracellular recombinant thiocyanate hydrolase. The most obvious finding from this study is that the apoplastic expression system is more efficient than the cytoplasm expression system in the phytoremediation of thiocyanate. At last, this research also shows that the secreted thiocyanate hydrolase from engineered rice plants does not influence rhizosphere bacterial community composition.


Assuntos
Oryza , Biodegradação Ambiental , Engenharia Metabólica , Oryza/metabolismo , Plântula/metabolismo , Tiocianatos
10.
AMB Express ; 11(1): 124, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463855

RESUMO

p-Nitrophenol (PNP) is an important environmental pollutant and can causes significant environmental and health risks. Compared with the traditional methods, biodegradation is a useful one to completely remove the harmful pollutants from the environment. Here, an engineered strain was first constructed by introducing PNP biodegradation pathway via the hydroquinone (HQ) pathway into Escherichia coli. In the engineered strain BL-PNP, PNP was completely degraded to ß-ketoadipate and subsequently enter the metabolites of multiple anabolic pathways. The high tolerance and rapid degradation ability to PNP enable the engineered strain to have the potential to degrade toxic substances. The engineered strain created in this study can be used as a functional strain for bioremediation of PNP and potential toxic intermediates, and the method of assembling aromatic hydrocarbons metabolic pathway can be used to eradicate nitroaromatic pollutants in the environment.

11.
Ecotoxicol Environ Saf ; 220: 112407, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119926

RESUMO

2,4,6-trinitrotoluene (TNT) and cobalt (Co) contaminants have posed a severe environmental problem in many countries. Phytoremediation is an environmentally friendly technology for the remediation of these contaminants. However, the toxicity of TNT and cobalt limit the efficacy of phytoremediation application. The present research showed that expressing the Acidithiobacillus ferrooxidans single-strand DNA-binding protein gene (AfSSB) can improve the tolerance of Arabidopsis and tall fescue to TNT and cobalt. Compared to control plants, the AfSSB transformed Arabidopsis and tall fescue exhibited enhanced phytoremediation of TNT and cobalt separately contaminated soil and co-contaminated soil. The comet analysis revealed that the AfSSB transformed Arabidopsis suffer reduced DNA damage than control plants under TNT or cobalt exposure. In addition, the proteomic analysis revealed that AfSSB improves TNT and cobalt tolerance by strengthening the reactive superoxide (ROS) scavenging system and the detoxification system. Results presented here serve as strong theoretical support for the phytoremediation potential of organic and metal pollutants mediated by single-strand DNA-binding protein genes. SUMMARIZES: This is the first report that AfSSB enhances phytoremediation of 2,4,6-trinitrotoluene and cobalt separately contaminated and co-contaminated soil.


Assuntos
Cobalto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poluentes do Solo/metabolismo , Trinitrotolueno/metabolismo , Acidithiobacillus/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Biodegradação Ambiental , Proteínas de Ligação a DNA/genética , Lolium/genética , Lolium/metabolismo , Plantas Geneticamente Modificadas/genética , Proteômica
13.
Environ Res ; 197: 110959, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722526

RESUMO

The high toxicity of persistent pollutants limits the phytoremediation of pollutants-contaminated soil. In this study, heterologous expressing Halorhodospira halophila single-stranded DNA binding protein gene (HhSSB) improves tolerance to 2,4,6-trinitrotoluene (TNT), 2,4,6-trichlorophenol (2,4,6-TCP), and thiocyanate (SCN-) in A. thaliana and tall fescue (Festuca arundinacea). The HhSSB transformed Arabidopsis, and tall fescue also exhibited enhanced phytoremediation of TNT, 2,4,6-TCP, and SCN- separately contaminated soil and co-contaminated soil compared to control plants. TNT assay was selected to explore the mechanism of how HhSSB enhances the phytoremediation of persistent pollutants. Our result indicates that HhSSB enhances the phytoremediation of TNT by enhancing the transformation of TNT in Arabidopsis. Moreover, transcriptomics and comet analysis revealed that HhSSB improves TNT tolerance through three pathways: strengthening the defense system, enhancing the ROS scavenging system, and reducing DNA damage. These results presented here would be particularly useful for further studies in the remediation of soil contaminated by organic and inorganic pollutants.


Assuntos
Poluentes Ambientais , Poluentes do Solo , Biodegradação Ambiental , Proteínas de Ligação a DNA , Halorhodospira halophila , Solo
14.
Protoplasma ; 258(2): 379-390, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33111186

RESUMO

Carotenoids are liposoluble pigments found in plant chromoplasts that are responsible for the yellow, orange, and red colors of carrot taproots. Drought is one of the main stress factors affecting carrot growth. Carotenoids play important roles in drought resistance in higher plants. In the present work, the carotenoid contents in three different-colored carrot cultivars, 'Kurodagosun' (orange), 'Benhongjinshi' (red), and 'Qitouhuang' (yellow), were determined by ultra-high-performance liquid chromatography (UPLC) after 15% polyethylene glycol (PEG) 6000 treatment. Real-time fluorescence quantitative PCR (RT-qPCR) was then used to determine the expression levels of carotenoid synthesis- and degradation-related genes. Increases in ß-carotene content in 'Qitouhuang' taproots under drought stress were found to be related to the expression levels of DcPSY2 and DcLCYB. Increases in lutein and decreases in α-carotene content in 'Qitouhuang' and 'Kurodagosun' under PEG treatment may be related to the expression levels of DcCYP97A3, DcCHXE, and DcCHXB1. The expression levels of DcNCED1 and DcNCED2 in the three cultivars significantly increased, thus suggesting that NCED genes could respond to drought stress. Analysis of the growth status and carotenoid contents of carrots under PEG treatment indicated that the orange cultivar 'Kurodagosun' has better adaptability to drought stress than the other cultivars and that ß-carotene and lutein may be involved in the stress resistance process of carrot.


Assuntos
Carotenoides/química , Daucus carota/química , Proteínas de Plantas/química , Secas
15.
Plant Sci ; 302: 110699, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33288012

RESUMO

Abscisic acid-responsive element (ABRE)-binding factors (ABFs) are important transcription factors involved in various physiological processes in plants. Stomata are micro channels for water and gas exchange of plants. Previous researches have demonstrated that ABFs can modulate the stomatal development in some plants. However, little is known about stomata-related functions of ABFs in carrots. In our study, DcABF3, a gene encoding for ABF transcription factor, was isolated from carrot. The open reading frame of DcABF3 was 1329 bp, encoding 442 amino acids. Expression profiles of DcABF3 indicated that DcABF3 can respond to drought, salt or ABA treatment in carrots. Overexpressing DcABF3 in Arabidopsis led to the increase of stomatal density which caused severe water loss. Expression assay indicated that overexpression of DcABF3 caused high expression of stomatal development-related transcription factor genes, SPCH, FAMA, MUTE and SCRMs. Increased antioxidant enzyme activities and higher expression levels of stress-related genes were also found in transgenic lines after water deficit treatment. Changes in expression of ABA synthesis-related genes and AtABIs indicated the potential role of DcABF3 in ABA signaling pathway. Under the treatment of exogenous ABA, DcABF3-overexpression Arabidopsis seedlings exhibited increased root length and germination rate. Our findings demonstrated that heterologous overexpression of DcABF3 positively affected stomatal development and also reduced ABA sensitivity in transgenic Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Daucus carota/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Estômatos de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clonagem Molecular , Daucus carota/metabolismo , Daucus carota/fisiologia , Desidratação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/genética , Transcriptoma
16.
PeerJ ; 8: e10492, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354430

RESUMO

Carrot is an important root vegetable crop abundant in bioactive compounds including carotenoids, vitamins, and dietary fibers. Carrot intake and its products are gradually growing owing to its high antioxidant activity. Auxins are a class of plant hormones that control many processes of plant growth and development. Yet, the effects of exogenous application of auxin on lignin biosynthesis and gene expression profiles of lignin-related genes in carrot taproot are still unclear. In order to investigate the effect of exogenous indole-3-butyric acid (IBA) on lignin-related gene profiles, lignin accumulation, anatomical structures and morphological characteristics in carrot taproots, carrots were treated with different concentrations of IBA (0, 50, 100, and 150 µM). The results showed that IBA application significantly improved the growth parameters of carrot. The 100 or 150 µM IBA treatment increased the number and area of xylem vessels, whereas transcript levels of lignin-related genes were restricted, resulting in a decline in lignin content in carrot taproots. The results indicate that taproot development and lignin accumulation may be influenced by the auxin levels within carrot plants.

17.
Cryobiology ; 97: 159-167, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32628925

RESUMO

The kelp grouper Epinephelus moara has high economic value and is popular in fisheries and aquaculture in China. In the previous study, we treated the embryos at 16-22 somite stage at 4 °C, -25.7 °C, -140 °C and -196 °C, and successfully obtained surviving embryos in each group. To better understand the molecular changes affected by the low temperatures, we conducted a comparative transcriptome analysis among embryos exposed at 4 °C for 30 min, embryos exposed at -25.7 °C for 30 min and the control group. qPCR assays were conducted for the validation. Signal transduction pathways were highly enriched for the differentially expressed genes. c-Fos, c-Jun, JunD, GADD45, involved in MAPK signaling pathway, were upregulated when embryos were treated at low temperatures. As immediate early genes, Egr-1a and b, and IER2, that respond quickly to the environment stress, their expression increased as well. Hsp70 showed similar expression pattern as immediate early genes. Meanwhile, transcription factors Sox, HES, TFIID, muscle movement and protein synthesis-related genes were downregulated. Taken together, our findings suggest that cooling disrupts gene expression patterns in E. moara embryos. The differentially expressed genes may be involved in cellular resistance against low temperatures, possibly through neural activation, apoptosis, proliferation, differentiation, cellular recovery and heat shock regulation. This study also provides transcriptome dataset of E. moara embryos exposed to cold temperatures for future studies focusing on the molecular effects of cryopreservation.


Assuntos
Bass , Kelp , Animais , Bass/genética , China , Temperatura Baixa , Criopreservação/métodos , Perfilação da Expressão Gênica , Temperatura , Transcriptoma
18.
Int J Clin Pharmacol Ther ; 58(4): 195-197, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32068532

RESUMO

OBJECTIVE: This study aims to evaluate the clinical efficacy of ketotifen fumarate and budesonide administered as nasal sprays to treat allergic rhinitis. MATERIALS AND METHODS: A total of 96 allergic rhinitis patients, who were admitted to our hospital in recent years, were selected as research subjectes. All patients were treated with ketotifen fumarate and budesonide administered as nasal sprays. Clinical efficacy was evaluated after treatment. RESULTS: After treatment, the symptoms of nasal obstruction, nasal itching, sneezing, and runny nose significantly improved, and the score of these symptoms was significantly lower when compared to that before treatment (p < 0.05). After treatment, the eosinophils and IgE in peripheral blood of patients obviously reduced (p < 0.05). CONCLUSION: Combination treatment of allergic rhinitis using ketotifen fumarate and budesonide administered as nasal sprays has a good clinical effect in treating allergic rhinitis, which is of great significance to improve the clinical symptoms and immune function of patients. Ketotifen fumarate and budesonide have good therapeutic effects on allergic rhinitis. The combination of these two drugs can rapidly relieve allergic symptoms.


Assuntos
Budesonida/uso terapêutico , Cetotifeno/uso terapêutico , Sprays Nasais , Rinite Alérgica/tratamento farmacológico , Administração Intranasal , Humanos , Resultado do Tratamento
19.
Protoplasma ; 257(3): 949-963, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31982943

RESUMO

Carotenoids are a group of natural pigments that are widely distributed in various plants. Carrots are plants rich in carotenoids and have fleshy roots with different colors. Carotenoid accumulation is a complex regulatory process with important guiding significance for carrot production. In this work, three carrot cultivars with different taproot colors, Hongxinqicun (orange), Benhongjinshi (red), and Tianzi (purple) were chosen as experimental materials to explore the molecular mechanism of carotenoid accumulation in carrot. Results showed that the three carotenoids, namely, α-carotene, ß-carotene, and lutein, had accumulated in orange carrot cultivar Hongxinqicun. Lycopene was only detected in the taproots of Benhongjinshi. Lutein was the main carotenoid in Tianzi. Comparison of the carotenoid contents in different tissues of carrot showed that leaf blade was the tissue with the highest carotenoid accumulation. Expression analysis of carotenoid biosynthesis genes and its correlation with carotenoid accumulation confirmed the regulatory role of structural genes in carrots. The high expression of five lycopene synthesis-related genes, DcPSY2, DcPDS, DcZDS1, DcCRT1, DcCRT2, and low expression of DcLCYE may result in the lycopene accumulation in Benhongjinshi. However, the function of certain genes, such as DcPSY1 that was lowly expressed in red carrot, requires further investigation. Our results provided potential insights into the mechanism of carotenoid accumulation in three carrot cultivars with different taproot colors.


Assuntos
Carotenoides/metabolismo , Daucus carota/química , Regulação da Expressão Gênica de Plantas/genética , Cor
20.
New Phytol ; 225(5): 1915-1922, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31737907

RESUMO

Betanin has been widely used as an additive for many centuries, and its use has increased because of its market application as an additive, high free radical scavenging activity, and safety, health-promoting properties. The main source of betanin is red beet, but many factors notably affect the yield of betanin from red beets. Betanin is not produced in cereal grains. Thus, developing biofortified crops with betanin is another alternative to health-promoting food additives. Here, rice endosperm was bioengineered for betanin biosynthesis by introducing three synthetic genes (meloS, BvDODA1S, and BvCYP76AD1S). The overexpression of these genes driven by rice endosperm-specific promoter established the betanin biosynthetic pathways in the endosperm, resulting in new types of germplasm - 'Betanin Rice' (BR). The BR grains were enriched with betanin and had relatively high antioxidant activity. Our results proved that betanin can be biosynthesized de novo in rice endosperm by introducing three genes in the committed betanin biosynthetic pathway. The betanin-fortified rice in this study can be used as a functional grain to promote health and as a raw material to process dietary supplements.


Assuntos
Endosperma , Oryza , Betacianinas , Grão Comestível , Endosperma/genética , Engenharia Metabólica , Oryza/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...